
S++ Final Year Project Report
Member: Kinson Chan
Supervisor: A.T.C. Tam
2nd Examiner: K.W. Chong

Charray
FYI

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

2

Table of Contents
1. Introduction ...4

2. Dynamic Page Technologies ...5
2.1 PHP as Script 5
2.2 Java Servlet as Secure Solution 7
2.3 Common Gateway Interface as Traditional Answer 9

3. Problems with C++ for Dynamic Pages ...10
3.1 Data Conversion 10
3.2 Memory Faults and Leakage 10
3.3 System Call Incompatibility 10

4. S++ as New Solution ...11

5. Usage of S++ ...13
5.1 Choice 1: Complete the Code 13
5.2 Choice 2: Code Generation 16
5.3 Compile and Execution 19

6. Code Summary ..20
6.1 Classes 20
6.2 Execution Flow 20
6.3 Compilation 21

7. Possible Applications ...22
7.1 Embedded Systems 22
7.2 Quick Programming 22
7.3 Programming Assignments 22

8. Review of the Solution ..23
8.1 Automatic Conversion 23
8.2 Program Safety 23
8.3 System Call Encapsulation 24
8.4 Ease of Use 24
8.5 Choice C++ Language 24

9. Possible Variations ..25
9.1 Objects, Services and Templates 25
9.2 Process Partitioning 25
9.3 Persistent Storage 25
9.4 New Data Types 26

10. New ideas ...27
10.1 Application of Unix Tools 27
10.2 New Language for Programmers 27

11. Conclusion ...29

3S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

4

1. Introduction
The idea to implement S++ originated from painful experience using scripting solutions for dynamic web
pages. Automatic conversion in scripting solutions comes in handy. However, in large applications, if strict
correctness is required, automatic conversion increases maintenance effort and cost.

On the other extra extreme, one may apply strong typing solution such as Java Servlet. However, applying
the language is not strict forward as the language is not designed for Internet operations. Moreover, a lot
of servlet solutions requires knowledge and experience in object oriented programming and even pointers
handling, which are in fact more than enough.

Being a dream replacement for the tools above, S++ aims to improve efficiency in coding and strength
against malicious input, with the help of strong typing property on C++.

S++ can be thought as a C++ program with blanks. Programmers can fill in the blanks on their own,
compile, and obtain an executable. Although coding in this way is complicated, expert programmers may
like the full power of control.

Meanwhile, S++ provides an interesting way to fill in the blanks - let the code generator in S++ to do the
job.

The code generator improves efficiency in coding by simplifying the code required for common tasks in a
web application. Examples include user input conversion and file access. In the following context, we call
variables related to these operations parameters.

The generator improves security also by simplifying the code required for parameter checking. Because of
simplified checking, programmers are encouraged to write more restrictive codes.

Parameters are marked by some special tokens called modifiers. Instead of requiring programmers to tell
how to do the checking, progrmmers are simply required to tell how they would like the parameters be.

While not everyone likes S++ (probably due to C++’s nature), somebody may find this tool useful.

5S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

2. Dynamic Page Technologies
In this part, we discuss some of the existing dynamic web page technologies. We learn where they are not
attractive enough and where they are useful.

2.1 PHP as Script
PHP is one of the most popular scripting solutions for dynamic pages. Unlike other solutions, PHP is spe-
cially designed around serving dynamic web pages.

2.1.1 Language

PHP is a weak typing language. Programmers can use variables without prior defi nition and initialization.
Strings and numeric values can be implicitly converted. The same type of variable is also capable to be an
array or hash.

Internet applications involve a lot of conversions. Examples include communicating with user and database
as string, and calculating as number internally, for the same variable. Weak typing allows all these conver-
sions implicitly done.

The downside of this design is the impossibility to check the type of a parameter automatically. According
to the PHP manual, although it is possible to give hints about type of an object, giving hints for primitive
types is not supported. If a programmer wish to have type checking, it is required to check it manually in
the code.

Failure to do checking usually leads to logic error, as shown in the picture. “4k” is treated as 4 for calcula-
tion and “4k” again for user output. A wrong message is therefore generated.

Unfortunately, it is not straight forward to ensure the checking is well done in all parts of the code. Having
big PHP-based software means high cost of code audit and maintenance. For example, one of the most
popular open-source PHP forum software, phpBB (www.phpbb.com), has received half a decade of patch-
ing for 2.0.x without another major release.

Moreover, doing this checking everywhere is computationally expensive, further hampering performance.
We discuss a new way to do these checking in “New Ideas”.

�����

���������������������

�������������������

���������������������

���������������������

�����

�������������������������

���������������������

�������������

�������������������������

����������

�����������

�

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

6

One may question if type inference helps to do checking without runtime penalty. Type inference deter-
mines if there are any type mismatch, given the operation on the variables. Mismatches are reported in
compile time.

The answer to this possibility is no. Values of variables usually come from user input and database. It is not
possible to predict what users enter in runtime. It is neither possible to tell what type a variable is expected
from function calls. For example, mysql_escape() accepts all the strings. Moreover, it is questionable
whether programmers are willing to apply type inference checking, provided the one without works well
apparently.

2.1.2 Infrastructure

While it is possible to run PHP alone in command line interface, it is a common practice to install PHP as
a module inside web server. It is required to have modules built according to each of the web server. The
choice of these modules and choice between web servers are limited.

2.1.3 Security

When PHP is running as a module, it shares the same security setting of the web server. Without proper
setting, a PHP script can touch contents of a web site that it does not belong to, or even some system set-
tings. In order to rectify the problem, a lot of security settings (e.g. safe mode) are introduced. However,
compared to how an operation system partition the processes, PHP’s approach is not natural.

2.1.4 Deployment

PHP usually exist as a module in web server. Programmers simply need to copy the PHP scripts onto some
locations readable by the web server process, and expect the code to run.

Although we have a single organization managing PHP, PHP language has been changed a lot. It is ques-
tionable whether the code is portable. Properties of object oriented programming is one of the well known
issues. In PHP4, copying object is done by assignment operator (=). In PHP5, the same instruction is inter-
preted as copying the reference. These differences silently make applications fail.

PHP setting is also one of the source of incompatibilities. PHP interpreter’s behavior can be changed
drastically simply because of different confi guration. For example, the register_global option can be
switched on and off easily and this affects how parameters are saved - as global variable or as an element
inside an predefi ned array. With all these settings under control of administrators, it is diffi cult to make
sure programs run seamlessly.

�����������������������

��������������������

��� �������

��������

7S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

2.2 Java Servlet as Secure Solution
Java is one-language-fi t-all solution from Sun Microsystems. The language is designed to be object ori-
ented (except primitive types). Java servlet is one of its application.

2.2.1 Language

Java is a strong typing language aiming straightforward reading and writing. Although it is from C++, it
intentionally drop some of the features for clarity and security. Examples include pointers and operator
overloading. Without pointers, a lot of forceful type conversions in C and dangerous situations are abol-
ished.

Java is successful in improving sustainability of programs. In a C program, failure to access to a pointer is
fatal. In Java, the failure usually causes terminal of a thread only.

Java is also successful in making sure parameter types agree with the methods in most of the cases. On
the other hand, this strictness is not useful for the front end of web applications. The conversions between
types have to be done manually. Moreover, this kind of conversion is not exception-safe, meaning a lot of
codes have to be written for error handling.

try {
 int Num1 = Integer.parseInt
 ((String)request.getParameter(“Num1”));
} catch (Exception e) {
 // error processing...
}

2.2.2 Infrastructure

Unlike PHP, design and implementation of
Java Servlet container is separated. We have a
few implementations of Java Servlet contain-
ers.

Java Servlet containers are usually capable
of running as a standalone server, or get
connected to web servers through modules.
Examples include mod_jk, which links
Apache HTTP server with Apache Tomcat.
This makes the structure relatively more com-
plicated. The web server has to communicate
with the container through socket operations.

As the name suggest, Java Servlet is written in Java and compiled in Java byte-code. We need Java runtime
and even Java SDK to run the containers.

�����������������������

�������������������

���

�������

�����������������

�����������������������

��������

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

8

2.2.3 Security

Java is built for secure computing. On the other hand, servlet container is a very complicated piece of
program. It runs under a single Unix user permission. Failure of partitioning may damage the web applica-
tion. However, given that a few containers can run independently, the area of damage is smaller.

2.2.4 Deployment

Deploying a Java Servlet is more demanding than a PHP file. In order to run Java Servlet, we need to have
Java virtual runtime, Java SDK and a Java Servlet Container ready. Servlets are not executing on their own.
They have to be put inside a web application.

In order to have an web application ready, one has to provide some configuration files about the application.
Examples include mappings between URL to Servlets and environment variables for the application. Pro-
grammers can rely on their favorite integrated development environment to prepare the files.

In order to compensate the complexity, the whole web application, including the configuration files, can be
packaged into a .war file for easier handling. This eliminates the risk of having a specific file missing.

One interesting point to note is, the infrastructure software for running Java Servlet is relatively more
demanding to the computer system. For example, Java Servlets as well as the containers are usually in the
form of interpretation rather than native code. Relative more CPU resource is required to do the same task
in PHP or CGI. It is not always possible to be run on underpowered embedded system.

9S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

2.3 Common Gateway Interface as Traditional Answer
Common Gateway Interface (CGI) is a unix style answer to dynamic web page technology. It is a specifi ca-
tion how a web server can interact with an external program for dynamic web pages, and does not bound
programmers to any languages.

2.3.1 Infrastructure

When a request for dynamic web page is
received, the web server initiates a new process
and execute the CGI executable. Request’s
information (e.g. query string, upload content)
are passed through environment variables and
standard output. Web server delegates the output
from process’s standard output to the user.

Although CGI is the oldest technology among
the three discussed, it has the least software
dependency with the languages and web servers.
Implementing according to CGI standard is the least diffi cult because it involves piping input and output
only. While we may not want to apply CGI anymore, it will be wise for us to consider the beauty of its
dependency-avoidance.

2.3.2 Security

CGI had been well known for the bad security. Web servers was used to initiate the CGI executables as
root or a centralized Unix account. Processes can step on each other’s data. Besides, processes of the same
application run without central coordination, processes of the same executable may overlap execution so
close that race condition takes place.

The potential to be secure on CGI is, however, high. The security problems can be solved easily by having
different Unix accounts for different executables, as well as caution on race conditions. The processes are
partitioned by the operation system. The partitioning is natural (without extra programming for partition-
ing) and effective.

2.3.3 Deployment

In order to deploy a CGI program, it has to be copied to a folder accessible by the web server, and mark the
program (or the folder) to be executable. Whenever there is a request, the server instantiates the program
once for result.

This design does not restrict users to choose either compiled programs or scripts. With correct header (i.e.
the interpreter’s absolute path), scripts can be executed as if they are executable. Other programs can be
compiled manually and be put inside.

Although this deployment is simple, the execution cost is not low. Whenever there is a request, a process is
instantiated. Instantiating a process is a high cost operation, especially when the CGI program involved (as
well as the interpreter) is large.

�����������������������

�������������������

��������

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

10

3. Problems with C++ for Dynamic Pages
3.1 Data Conversion

Unlike scripting solutions, converting from string to number, or from number to string in C++ is not trivial.
It is in fact even more troublesome than Java. The following code segments show the two ways to convert
a string into an integer.

In fact, it requires extra checking to make sure the conversion is correct. The following examples treat “4k”
as 4, just like other scripting solutions.

// C++ style.
istringstream input(str_value);
input >> int_value;

// C-style, not thread-safe.
int_value = atoi(str_value.c_str());

3.2 Memory Faults and Leakage
It is not uncommon to have dynamically allocated memory. In C and C++, doing this can be very danger-
ous because the memory locations are represented in pointers. Pointers are dangerous because their value
can be illegally changed, pointing to invalid locations. It is also possible to have memory leakage because
allocated memory does not go out of scope with the pointers.

A badly-written C++ program may contain a few above-mentioned bugs. They may hide at the beginning
and suddenly appears, turning off the software or even destroying data.

3.3 System Call Incompatibility
While web applications are related to simple calculations only, it is inevitable to have access to system
calls. Examples include network and file handling. However, these functions’ return value do not agree. For
example, fopen(3) returns zero for failure and read(2) returns negative number for failure.

Programmers can get confused when they have to handle these on their own.

11S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

4. S++ as New Solution
4.1 Language

S++ allows programmers to create dynamic pages in C++. C++ is a strong typing language. Meanwhile, it
has fl exibilities for interesting and useful effects.

One of the examples is operator overloading. It is possible to defi ne new types and the operations on them.
For example, we can defi ne a date structure and a time structure, and allow addition of a date instance and
a time instance for another date. Without overloading, one would have to implement all these through func-
tion calls, making the program less readable.

S++ has applied the operator overloading (type conversion) to allow semi automatic variable conversion. A
data type, var, is created. It is possible to use var instances to store numbers and strings.

var x = “123”;
cout << (int)x + 123 << endl; // 246
cout << (string)x + “123” << endl; // “123123”

This improves the readability of code as the code is made shorter. Programmers can convert variables from
HTTP request to any type that they want at the beginning, and continue to enjoy strong typing feature in
the rest of the code.

Security and correctness are also enhanced because programmers are no longer tempted to think of their
own ways for the conversion. For example, using thread-unsafe atoi() for conversion may bring prob-
lems.

S++ intentionally left operations on itself undefi ned (which is different from other weak typing languages).
This forces programmers to choose what data type they would use for the operation. This looks more trou-
blesome than weak-typed languages however it ensures there are not any ambiguities.

4.2 Infrastructure

S++ servlets run as normal Unix processes.
They can be individually switched on and
off at administrators’ command. Unlike
CGI, however, individual page requests are
treated as threads instead of processes. When
a request arrives, S++ creates a thread. The
thread is responsible serving the user by
receiving and sending HTTP messages. The
thread terminates when the user has fi nished
the connection.

Thread is chosen over process partitioning because this allows better data sharing. This saves the cost
for interprocess communication. Besides, starting a thread is less expensive than starting a new process
because threads completely share the address space. Starting a new process involves some memory page
copying at some time (even if copy-on-write is applied, the cost could not be totally eliminated).

�����������������������

��� �����������

��������

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

12

4.3 Security

S++ servlets do not interfere each other. They run as individual Unix processes and they are partitioned by
the operation systems.

However, thread is a poor mean to partition different requests. Badly written servlets may have requests
interfering each others. This should be rectified in the new designs and improved versions.

4.4 Deployment

In order to deploy a S++ program, the program has to be compiled for the platform. Meanwhile, thanks to
the compiler, some potential mismatches and grammar errors are filtered.

After the compilation, the program can be started immediately. There is no need for web servers or runt-
imes. The total cost for having a S++ program running is smaller.

13S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

5. Usage of S++
5.1 Choice 1: Complete the Code

If a programmer chooses to start from choice 1, he / she can start from the folder example-empty, and
start modifying main.cc inside.

5.1.1 Configuration - sxx_config()

Configuration can be done by filling in contents in the sxx_config(). Initially, this function is empty. This
implies the default settings are used. Programmers can change the settings by altering the following global
variables:

Variable Meaning Default
string sxx_hostname Hostname (or IP) of the interface to listen to. localhost
string sxx_port Port number for servlet to listen. 8080
int sxx_backlog Number of unserved connections to hold. 10
int sxx_max_threads Maximum number of threads at the same time. 100
int sxx_receive_timeout Number of seconds to wait for a read. 10
int sxx_transfer_timeout Number of seconds to spend for an output. 60

5.1.2 Initialize and Destroy - sxx_init() & sxx_destroy()

After calling the configuration, the server attempts to to start listening the socket. If it is successful, before
the first request is served, initialization procedure is called. Programmers can specify the procedure in
sxx_init().

Before the server shuts down, it calls the destroy procedure. Programmers can specify the procedure in
sxx_destroy(). A server can be shut down through sending interrupt signal to it.

5.1.3 Main Dish - sxx_handler()

Programmers can define what to do while handling a page request. sxx_handler() is a function with four
parameters: const request& input, response& output, var& page and var& session. Opera-
tions on these data structure is discussed in the following sections.

5.1.4 Var

In order to provide type conversion, a var class is designed. A var instance can handle number, string, array
or a map. It is also one of the most important class in this project, transferring data through different code
sections.

5.1.4.1 Scalar - Number and String

In order to assign a number or string into a var instance, one simply need to do a simple assignment. It is
possible to extract the value in another type, therefore providing the effect of conversion.

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

14

We do not mean a simple conversion in scripts. We wish to make sure the source string is in correct format.
That is, we do not want to treat “4k” as 4.

string source = “123”;
var convert = source;
int result = convert;

Alternatively, it is possible to use cast-like syntax and make it shorter.

string source = “123”;
int result = (var)source;

The equivalent C++ and PHP code are as follows.

string source = “123”;
int result = 0;
istringstream input(source);
// Throw exception, instead of continue, when anything fails.
input.exceptions(istringstream::failbit);
input >> result >> ws;
// some more checking to ensure there is no trailing characters.

$source = “123”;
if (is_numeric($source)) {
 $result = intval($source);
} else {
 // error procedure.
}

5.1.4.2 Vector - Map

A var instance can also be an array or a map. Conversion of array or map to any data type yields an excep-
tion. Accessing array or map contents of a scalar (number or string) var instance is also an exception.

An array and a map is different that array accepts unsigned integer as index and map accepts string.

The index of an array should not get out of bound by more than one, or an exception would be thrown. If it
is just exceeded by one, a new element is created.

When an instance is made const, it would yield an exception when an element not defined is called. This
eliminates the need for programmers check if a variable exist before proceeding.

var x;
x[0] = 123;
x[1] = 234;
x[x.size()] = 345; // x.size() is 2 - x[0] and x[1]

const var& x2 = x;
x[100]; // exception thrown!

var y;
y[“a”] = 1;
y[“b”] = 2;

const var& y2 = y;
y[“c”]; // exception thrown!

15S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

5.1.5 Request Class

Request information from the user is kept in a class called request. It does not have any member func-
tions or private data members. It is totally transparent and allows programmers to handle it as if a simple
abstract data type. The data members are as follow:

Member Meaning
string remote_host The IP the user is connecting from.
string remote_port The port number the user is connecting from.
string method Method of the HTTP (e.g. GET, POST).
string host Host name given by the Host: header.
string path Path name requested by the web server.
string protocol Protocol reported by the browser.
map<string, string> headers HTTP headers.
var get Parameters sent through query string
var post Parameters sent as POST attachment.*
var cookie Parameters sent as cookie.

* Support for multipart attachment is not implemented.

5.1.6 Response Class

Response information, similar to request information, is transferred through a transparent class. The data
members are as follow:

Member Meaning
int status Status code (e.g. 200 for OK, 404 for File Not Found).
bool connection_close Whether to shut down the client after serving this

response.
string location URL to redirect, if any.
string content_type Content type of the file to return.
map<string, string> headers Other headers to include in response.
map<string, var> expire_cookie Cookie entries that browser should drop.*
map<string, var> session_cookie Cookie entries that browser should keep as session.*
map<string, var> persistent_cookie Cookie entries that browser should keep for an year.*

* Although var is used, nested structure of var (e.g. array of array) is not supported.

5.1.7 Page & Session

page and session are two extra place holders for state information. Information stored in page persists for
a single page request and those in session persists until the user drops the session id store by a cookie.

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

16

5.2 Choice 2: Code Generation
If a programmer chooses to start from choice 2, he / she can start from the folder example-gen. The main.
cc of example-gen is slightly different than the one in example-empty. The function sxx_handler()
is filled with a few lines of code. This is done to allow the code generated in the below procedure gets
involved with the final compilation.

The following sections tell the format and usage of the .page file in the pages folder. The remaining part is
similar to the methods stated in choice 1.

5.2.1 Syntax

A page file can be considered as three sections: header, parameters, body. The partitions are partitioned by
“%%” on its own line.

Page files should be put into the pages folder, with .page as the filename extension. Similarly, static content
should be put into the static folder. There should not be any folders inside the two folders.

5.2.2 Header

Header allows programmer to include header files and define functions. When the intermediate code is
generated, the lines are put on the top most, with least modifications.

Meanwhile, it is not necessarily to include the sxx library header, nor common C++ libraries (string,
map, vector). They are automatically included and they are required to make the intermediate code com-
pilable.

5.2.3 Parameters and Modifiers

Parameters are the variables obtained through different means of communication and storage. Besides
specifying priority of the source, programmers can also define how a parameter looks like. These hints and
requirements are represented in modifiers.

In order to define a parameter, programmers can write in the following format:
<type> <name> [= <init_value>]; <modifiers>

5.2.4 Variety of Modifiers

There are three types of modifiers - source, and two levels of restrictions, as well as an optional hint for
error:

17S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

Modifi er Function
Source GET Retrive value passed by GET method (query string)

POST Retrive value passed by POST method
ECOOKIE Retrive value from cookie. Discard the cookie after this page.
SCOOKIE Retrive value from cookie and declare it to persist in session.
PCOOKIE Retrive value from cookie and declare it to persist for 1 year.
PAGE* Tempoary value for this page request.
SESSION Tempoary value for this session.
READ(fi lename) Retrive value from a fi le.
WRITE(fi lename) Save value to a fi le after this page.

1st Level
Restriction

MINL(len) Minimun length of the input.
MAXL(len) Maximum length of the input.
MINV(val) Minimum value of the input.
MAXV(val) Maximum value of the input.
REGEX(exp) Regular expression for the input.
ASSERT(exp)* Assert the expression returns true.

2nd Level
Restriction

MATCH(exp) The variable must match with the given expression.
MISMATCH(exp)* The variable must mismatch with the given expression.
ERROR(exp) Hint for error string. (Default: name of variable).

* These modifi ers are proposed. However they are not implemented at the time of writing.

READ() and WRITE() provides fi le access in the data folder. Programmers do not need to worry about the
performance of repetitive reading and writing because S++ does have cache for these operations. In future,
it is possible to replace it with some effi cient means of storage.

PAGE is meant to be persistent within a single page request only. E-, S- and PCOOKIE represent expire
cookie, session cookie and persistent cookie (1 year) respectively. The three cookies are the same except
that they have different expiry time.

MINL(), MAXL(), MINV(), MAXV() represents minimum and maximum length and value.

REGEX() is used to ensure a parameter value fi ts into a pattern. Understanding regular expression is not
well known for some people, it is suggested to have ASSERT(), where programmers can pass the value
to an external function for checking.
Error is raised if the returned value is
false.

5.2.5 Execution of Modifi ers

When a parameter is specifi ed, each
of the sources is tried. A try is con-
sidered successful if and only if all �����

������
�����������

������ ������� �������

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

18

the first level restrictions are fulfilled. If not, initialization value is taken, if present, or an exception is
thrown.

After determining the value of a variable, it is checked against the second level of restrictions. If any of the
restrictions fail, an exception is thrown.

When the code segment throws an exception, content in the ERROR() modifier is thrown. If this modifier is
absent, the name of the variable is thrown.

Thrown exceptions are handled by the sxx_main() program. A default field error page is shown with the
error shown.

 5.2.6 Example

The following is an example about how to apply the checking - password check.

%%

string username; GET POST REGEX(“^[a-z][a-zA-Z0-9]*$”)
string internal_password; READ(username + string(“.password”))
string password; GET POST MINL(1) MATCH(internal_password)

%%

The equivalent but longer PHP script is as follow:

<?php

$username = $_GET[‘username’];
if (!preg_match(“^[a-z][a-zA-Z0-9]*$”, $username)) {
 $username = $_POST[‘username’];
 if (!preg_match(“^[a-z][a-zA-Z0-9]*$”, $username)) {
 die (“Invalid field: username”);
 }
}

$internal_password = @file_get_contents($username . “.password”)
 or die (“Invalid field: internal_password”);

$password = $_GET[‘password’];
if (strlen($password) < 1) {
 $password = $_GET[‘password’];
 if (strlen($password) < 1) {
 die (“Invalid field: Password Mismatch”);
 }
}

if ($password != $internal_password) {
 die (“Invalid field: Password Mismatch”);
}

?>

Username is first determined. It is checked that the username to be alphanumerical only, with a mandatory
small letter at the front.

19S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

Internal password is second obtained from the file. Since the above line has made sure there is no evil
value in username, it is save to take the username to obtain the internal password.

Finally, user provided password is obtained. It is checked that the password has to match with the internal
password. MINL(1) is used to determine if a variable is intentionally filled. (It is normal for web browsers
to submit null values, if there are unfilled fields.)

In order to shield the error of failure (as a good practice for system security), ERROR(“Password Mis-
match”) can be placed on each of the lines in parameter section. No matter what the reason is, the user
gets the given string as error.

Variables mapped with E-, S-, PCOOKIE, PAGE, SESSION, WRITE() modifiers are updated when the code
finish without exception thrown. For instance, the following shows how to implement a session counter.

%%

int count = 0; SESSION

%%

output.content << “Count = “ << ++count << endl;

5.2.7 Body

The body can be considered as the one we find in a function. The function header is filled by the generator.
Some of the macros functions are available.

Macro Function
sxx_forward(exp) Silently forward the execution to another page.
sxx_include(exp)* Silently include another page and continue execution.
sxx_redirect(exp) Put the new URL into Location: field, and return immediately.
sxx_read(filename) Read the given file name in data folder.
sxx_write(filename, exp) Write to the given file name in data folder.

* Proposed but not implemented.

5.3 Compile and Execution
To compile, issue a “make” command at the base folder of the project (e.g. example-empty). If there is no
error, an executable servlet is created.

If method 2 is employed for development, it is necessarily to have the data and static folder writable by
the servlet.

The executable can be started by issuing “./servlet”. It blocks the standard input and output normally. It
can get gracefully terminated when it receives interrupt (Ctrl-C). Some other signals, for example, hang-up
signal, are ignored.

When the server terminates, it wait for all the threads to finish and the file cache are written back to the
persistent storage.

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

20

6. Code Summary
6.1 Classes

In order to reduce software dependency, class is applied to partition the codes. This make the code more
manageable. Each class has its special duty to handle. Some of them are built in order to represent informa-
tion while some others are façade classes (i.e. encapsulating system calls).

However, applying class does not mean to be object oriented programming. For example, inheritance and
polymorphism are not applied through out the code. Unlike Java Servlet, S++ programmers do not need to
understand these theories.

The following is the list for the classes built.

Class Function
var Represent common data types (e.g. string, numbers) as well as array.
request Represent HTTP request from web user.
response Represent HTTP response from the servlet.
client_socket Façade class for active socket (Socket in Java).
server_socket Façade class for passive socket (ServerSocket in Java).
request_parser Interact with client_socket and return request instances.
response_generator Express response instances back to the client_socket.
file_manager File input, output and caching. (Singleton)
session_manager Session creation and timeout handling. (Singleton)

6.2 Execution Flow
Similar to C++ programs, S++ starts with the main() function in sxx_main.cc. The main() function is
responsible to glue the classes together to work.

main() runs programmer-provided sxx_config() for configuration information. This includes IP and port
number to listen to, number of seconds to wait for a read operation, etc.

After getting the configuration information, main() instantiates server_socket and calls the member func-
tion accept_client() in order to start listening to the given IP and port number.

Whenever there is a new connection, accept_client() returns with a client_socket instance. main()
creates a thread, executes sxx_client_handler() to serve the connection.

The client thread instantiates a request_parser to accept the HTTP requests. Corresponding session
information is provided by session_manager. Obtained requests and session information are passed to
programmer-provided sxx_handler() for processing. Afterwards, the result (in form of response instance)
is passed to response_generator for HTTP message.

It is possible that exceptions are thrown, uncaught by the sxx_handler() and the stack unwinds to sxx_
client_handler(). In this case, the function generates a small error page, reporting what is caught.

21S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

Some signals are caught by the functions in sxx_main.cc. For example, interrupt signals are caught and the
program gracefully terminates after receiving the code. Hang-up signals are caught and ignored, however.
Segmentation faults are also caught and the offending thread gets terminated.

6.3 Compilation
Compilation of the program is done
with the help of Makefi le, read by
make. make is a traditional tool to
coordinate generation of various
fi les. It understands the dependency
of fi les and decide which fi les to be
updated. The update process can be
specifi ed in Makefi le.

When make is issued in a web appli-
cation folder, it fi rst makes sure the
sxx (bundled code) is up to date by
issuing another make command in
the folder.

If choice 2 is selected, make reads
.page fi les in pages and generate
another Makefi le in the folder. By
issuing another make in the folder,
it generates intermediate C++ code
and then compiled parts. Besides, a
few default pages in the web appli-
cation folder is compiled.

Finally but not the least, the main.
cc is compiled with all the above-
mentioned parts joined.

����������
������������

��������

�������

��������

��������������

��������������

��������������

���������������

�������������

����

������

����������

�������

��������������������������

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

22

7. Possible Applications
7.1 Embedded Systems

Designers can apply S++ without worrying if their systems are strong enough to support sophisticated soft-
ware - S++ simply does not require any of them as companion.

7.2 Quick Programming
Since parameters can be checked and obtained easily in S++, it can be applied for quick programming
without losing security against malicious input.

7.3 Programming Assignments
A number of computer science students learn C++ as their first language. S++ can be taken as a choice to
apply what they have learnt directly.

23S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

8. Review of the Solution
In this section, we review if problems related to dynamic web page in C++ are solved, as well as related
difficulties and findings.

8.1 Automatic Conversion
S++ succeed providing automatic conversion. With the var class, it is possible to convert string to number
and vice versa. On the other hand, it fails to provide automatic conversion.

Conversion to any data type is believed to be possible because C++ supports templates. Templates allow
parameter of functions to be expressed in generic form, and have the concrete functions implicitly created
on demand. Whenever there is a new type to convert, a new function can be silently generated.

On the other hand, we met the wall. For example, it is not possible to have an above-mentioned converted
to string. Thanks to the variety of string constructors, the compiler gets confused because there are multi-
ple pathways for conversion:

var -> int -> string
var -> char* -> string
var -> string -> string

The procedure to disable some of the pathway is not known. Therefore we fall back to using explicitly
defined conversion to string and integers.

8.2 Program Safety
Writing web program with S++ can be safer than other solutions.

First of all, S++ is designed to use C++ style programing, instead of C-style. The interface of S++ does not
involve pointers. (The internal involves a few.) For example, we use string instead of char*, vector<>
instead of array. The danger of having dangling pointers and memory leakage is much reduced.

Secondly, S++ provides some encapsulation of system calls. The wrapped interfaces, once again, do not
have pointers directly involved. Programmers can exchange data with the class through safer mechanism.

On the other hand, S++ fails to make the environment completely safe.

S++ does not provide enough partitioning between the connections. The connections are served by threads
of the same process. Threads within a single process are not partitioned. Although S++ can shut down the
offending thread if memory access violation is detected, it does not ensure data in the process is intact, nor
telling where the problem is.

Even worse, S++ does not disallow programmers to use their own dangerous C code. Although some
people consider this as a flexible design, this can be also viewed as dangerous.

To ensure safety, we need to consider more about process partitioning and even defining a new language.
They will be discussed in the following sections.

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

24

8.3 System Call Encapsulation
Except for socket, S++ does not provide a lot of usable encapsulation of system calls. It is because S++ is a
user-space program with limited area of usage.

One of the regret, however, is that we lack façade class for locking. Locking is essential to protect critical
region of a program, improving the correctness and stability.

The reason not to implement locking is, failure to unlock after a thread gets killed can lock the whole
system. Besides, some programmers may get confused with locking mechanism and get into trouble, such
as dead lock and starvation.

8.4 Ease of Use
S++ simplifies some of the task while complicating others.

Parsing and converting user input is made simpler. Programmers do not need to think of their own way to
do the capturing and conversion. The tasks are handled by the bundled code.

On the other hand, the compilation process is made very difficult. In order to prepare a S++ program, pro-
grammers need to put their source files at the correct location, change the makefile (in order to get extra
source files compiled) and get messed with lines of make output.

8.5 Choice C++ Language
Writing web program in C++ is a strange (or novel) idea, as questioned by a lot of people.

C++ allows better flexibility. For example, its operator overloading is superior and there are not any coun-
terparts in modern languages. Operator overloading allows creation of a var class with ease, and the saved
effort was spent on other issues and interesting designs. If other languages had been chosen, we would have
spent time thinking how to compensate the loss.

Writing program in C++ is challenging. After working for this year, I insist that writing a project in C++ is
a fruitful experience. C and C++ are difficult to handle because there are a lot of pointers involved. Getting
these done correctly is a very good mental exercise.

However, it is no longer necessary to rely on C++ in the future design.

One of the examples is parameter checking. Although it is implemented in C++ for the time being, there
are not any restrictions for it to be applied on other languages, from scripts to compiled. All the complica-
tions of the target language can be hidden by the code generator.

Operator overloading is no longer a valid reason to stick with C++. With the help of code generation, we
can emulate operator overloading with function overloading. This allows us to choose other languages for
implementation.

25S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

9. Possible Variations
9.1 Objects, Services and Templates

In the previous sections, it is shown how convenient it can get to represent a page. We can extend the idea
to objects, functions and templates.

Object is used to store data. They can be used for grouping a few basic data pieces together. Advantages of
using generated object over original C++ class is, programmers do not need to specify the code for getter,
setter, and other simple elements. The generator can also generate code to serialize the instances for linear
storage.

Services are essentially non-accessible pages. Using services instead of pages ensures user cannot access
the page directly and cause unexpected result. Functions can be used for repetitively called procedures
among a lot of pages. Examples include password checking, including the common header for output, etc.

Templates are another type of pages. They are different in the sense that they focus on output, instead of
computation. In a template file, anything recorded in the body are output directly.

These three extra things look simple. However, we have to note that parsing the modifiers with original
C++ code is not trivial. This is one of the reasons why only page is implemented.

9.2 Process Partitioning
In the current design, each of the connections is handled by a thread. There is not much partitioning and
protection between threads except they use their own function stack. The security is not strong. This is a
compromise to enable users to share global variables across different processes without knowing how to
make interprocess calls.

When the idea of parameter mapping appears, the need to share global variables become less. With the
help of modifiers, we can mark some variables to be global, or map it to a common file. It is then S++’s
responsibility to make interprocess calls whenever sharing is required.

Considering this fact, it is now feasible to change this unsafe threading mechanism to a process-based par-
titioning without forcing programmers to learn interprocess communications.

This design is more fault-tolerant than the current design. The processes are partitioned by the operation
system. If a computation of a single web page shows problem, the part of computation can be dropped
neatly by killing the process. If we collect all the update till the end of serving a page, the status can be
rolled back easily.

9.3 Persistent Storage
In the current design, it is possible to map a variable to a file only. This is design very inefficient and
inconvenient. For example, in order to represent scores of 100 students in 4 assignments, we need 400 files.
Operation system allocates 4 kilobyte to each of the files, wasting a lot of disk spaces. It is also trouble-
some to issue 400 read requests just for reading the table.

It is proposed to have a tabular method of data access. Instead mapping a variable to a file, we map a vari-

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

26

able to a cell of a CSV table. Programmers can represent this kind of operations by providing modifiers.
An example is as follow.

%%

string student; GET POST REGEX(“^[a-z][a-zA-Z0-9]*$”)
int row_number; LOCATE_ROW(“score_list”, 1, student) // search col 1 for student
int quiz1; TABLE(“score_list”, row_number, 2)
int quiz2; TABLE(“score_list”, row_number, 3)
...

%%

Similar to mapping variable to a file, a table can be cached and error conditions can be automatically
handled. Besides, according to the access pattern to a table, it is possible to make decision and build some
dynamic indices for better searching.

9.4 New Data Types
In C++, size of primitive data type is different on different machines. This complicates the amount of work
to check in compiling, and hampers the portability of code.

We can avoid this problem on S++ servlets by providing a new set of data types. We may include replace-
ment for C++ primitive types, as well as some types related to web programming (e.g. date). Thanks to
operator overloading function, we can define operators for the classes.

Besides, defining new types allows better arithmetic security. C++ does not generate exceptions when there
are arithmetic errors such as overflow and underflow. By redefining the operations, we can put this check-
ing back.

Last but not the least, we can implement a new string class. The new class can be designed to support UTF-
8 and regular expression operations. Examples include counting amount of characters instead of bytes, and
allows partial replacement of a string.

However, we have to note that besides the five operations (+, -, *, /, %), there are also math functions in
math.h, as well as string functions. Careful planning and investigation is required to obtain an optimal set
of operations and functions.

27S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

10. New ideas
After working for half an year, some new ideas are collected. Some of the ideas involve fundamental
changes to the project. Due to the time constraint, it is not possible to change the design and implement
them.

10.1 Application of Unix Tools

10.1.1 lex and yacc

In the current S++ design, a “hand-built” parser is applied for HTTP messages.

Building (and probably maintaining) of the parser is a difficult task. HTTP messages is not a simple com-
bination of read line processes.

The parser is not efficient in the sense that it reads byte by byte. On the other hand, if we chose to build a
buffer, we may end up further complicating the parser design.

If we redesign the parser with the help of lex and yacc, the parser source code will be more readable. The
product may also be faster because these tools have been built for decades and they are optimized to do
their job well.

10.1.2 nc

The parser relies on the specific socket façade class. This design has high software dependency and looks
unnecessary given we have nc for piping network signals to pipes.

The challenging part is that nc is cannot serve more than one connections at a time. We may need to rede-
sign it to suit our need.

The benefits of applying nc is, we can choose not to get pipe from nc, and reuse the software in other
means. This includes running as CGI (pipe from web server).

10.2 New Language for Programmers
After working for half an year with C++, I have accumulated experience with the language. However, I
have also noticed redesigning a new language is a good idea. It masks dangerous properties of C++ and
allows more possibilities for better web programming.

10.2.1 Elimination of Pointers

One of the most criticized and dangerous features of C and C++ is pointer. Ability to point at anywhere is
a dangerous source of runtime error.

In the new language, parameters can be only passed as value and reference.

In order to improve efficiency of pass by value, value assignments, and returning from functions, copy-on-
write can be applied.

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

28

10.2.2 New Definition of “Type”

In traditional programming, a type is identified if it is a string, a numeric value, or array of something.

This design is not satisfactory for the Internet world because everything is string and we need better dif-
ferentiation between the types. For example, date and English name are both strings. However it is a logical
error to mix them up.

Inspired by the parameter checking in S++, a new idea comes into mind. We can first make a very brief
separation - scalar and array, and provide flexible checking mechanism on top of them.

A scalar type can be represented in regular expression. Programmers are allowed to define operations with
types (e.g. addition, multiplication) and possible conversions (e.g. integer -> float).

A scalar variable is defined as string at the beginning. In order to facilitate different operations, its type can
be changed on the run time through checking. After variable passes checking for a type, the positive result
is cached until the variable is changed. This design allows repetitive checking of variable types without
huge penalty.

After getting the type changed, the behavior of operations on the variable changes. When there is type mis-
match at any part of code, exception is thrown.

var str1 = “123”;
var str2 = “234”;
var str3 = str1 + str2; // “123234”
str1(NUMBER); // str1 is now a number.
str2(NUMBER); // str2 is now a number.
var str4 = str1 + str2; // “358”

Besides scalar string, we need an expandable array (with index). Both the indices and contents of the array
can be checked with the fore-mentioned mechanism.

var ar1;
ar1[0] = “1”;
ar1[1] = “2”;
ar1[] = 3; // ar[2] = 3;
ar1(ARRAY(NUMBER)); // everything inside ar1 is now treated as number.

10.2.3 Numeric Operations

Numbers can be represented as string, instead of binary. This feature exists on some languages such as
Perl. This feature avoids number overflow and underflow. Processor speed increases faster than harddisk
and network media. The bottleneck is not on the processor. This design allows better use of the extra proc-
essor cycles. Moreover, string conversion from web and to database becomes easier.

29S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

11. Conclusion
In this project, a framework for developing dynamic web server is developed.

S++ is easier to be used in some aspects. For example, the code for doing type conversion is shortened
while the strictness of conversion is increased. This allows programmers to express their commonly used
operations in a faster way.

Meanwhile, S++ has a lot of space to improve. Examples include better type conversion, better process
partitioning and better programmer experience.

Although I am not confident with the code quality and I do not believe S++ can be applied directly, I
believe the idea obtained behind is useful for others. I am also optimistic in improving the software in the
future.

S++ Final Year Project Report (2006)
Kinson Chan, BSc(CSIS)

30

